CADMIUM BIOREMEDIATION BY BREVIBACILLUS SPP: A MINIREVIEW
Views: 58
Keywords:
Adsorption, Bioaccumulation, Bioremediation, Brevibacillus agri, CadmiumAbstract
This review examines the potential of Brevibacillus species in cadmium bioremediation, a critical environmental challenge due to the harmful effects of cadmium contamination. The review highlights the limitations of traditional chemical methods, such as precipitation, which are inefficient at low cadmium concentrations and costly. Instead, biological methods are increasingly favored for their cost-effectiveness, sustainability, and efficiency, particularly at dilute concentrations. The review focuses on the genus Brevibacillus, a group of bacteria known for their diverse environmental habitats and biotechnological applications. Specific species of Brevibacillus have demonstrated the ability to degrade pollutants and accumulate heavy metals, including cadmium. For example, B. agri has been identified as having significant potential for cadmium tolerance and bioaccumulation. The mechanisms employed by these bacteria include biosorption, bioaccumulation, and extracellular uptake, making them effective candidates for bioremediation strategies. The review emphasizes that while several Brevibacillus species have been applied in cadmium removal, further studies are necessary to fully explore the potential of B. agri and other species in various contaminated environments. The findings underscore the importance of leveraging microbial processes for environmental cleanup, especially in areas affected by heavy metal pollution.
Downloads
References
R. A. Wuana and F. E. Okieimen, “Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation,” ISRN Ecol, vol. 2011, 2011, doi: 10.5402/2011/402647.
M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, and H. R. Kermani, “Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from wal-nut, hazelnut, almond, pistachio shell, and apricot stone,” J Hazard Mater, vol. 150, no. 2, 2008, doi: 10.1016/j.jhazmat.2007.04.118.
J. Tausz and P. Donath, “Über die Oxydation des Wasserstoffs und der Kohlenwasserstoffe mittels Bakterien,” Hoppe Seylers Z Physiol Chem, vol. 190, no. 3–6, 1930, doi: 10.1515/bchm2.1930.190.3-6.141.
B. M. In, Emerging technology for bioremediation of metals (Vol. 2). CRC Press. 1994.
N. Mahmoud and T. Jebril, “Systems biology design of the microbe toward the bioremediation of cadmium: a review,” Article in International Journal of Psychosocial Rehabilitation, 2020, doi: 10.37200/IJPR/V24I8/PR280906.
N. Jebril, R. Boden, and C. Braungardt, “Cadmium resistant bacteria mediated cadmium re-moval: a systematic review on resistance, mechanism and bioremediation approaches,” in IOP Conference Series: Earth and Environmental Science, 2022. doi: 10.1088/1755-1315/1002/1/012006.
N. Jebril, R. Boden, and C. Braungardt, “THE GROUNDWATER CONTAMINATED WITH CADMIUM: A SYSTEMATIC REVIEW,” ANBAR JOURNAL OF AGRICULTURAL SCIENCES, vol. 20, no. 2, 2022, doi: 10.32649/ajas.2022.176912.
N. M. T. Jebril, “Nanobiopolymer: Potential Applications in Bioremediation of Cadmium Contaminated Water,” Iraqi Journal of Industrial Research, vol. 10, no. 2, 2023, doi: 10.53523/ijoirvol10i2id290.
M. Tyagi, M. M. R. da Fonseca, and C. C. C. R. de Carvalho, “Bioaugmentation and biostimula-tion strategies to improve the effectiveness of bioremediation processes,” 2011. doi: 10.1007/s10532-010-9394-4.
L. E. Macaskie and A. C. R. Dean, “Cadmium accumulation by a Citrobacter sp.,” J Gen Micro-biol, vol. 130, no. 1, 1984, doi: 10.1099/00221287-130-1-53.
L. J. Michel, L. E. Macaskie, and A. C. R. Dean, “Cadmium accumulation by immobilized cells of a Citrobacter sp. using various phosphate donors,” Biotechnol Bioeng, vol. 28, no. 9, 1986, doi: 10.1002/bit.260280910.
L. E. Macaskie and A. C. R. Dean, “Heavy metal accumulation by immobilized cells of a Citrobacter sp.,” Biotechnol Lett, vol. 6, no. 2, 1984, doi: 10.1007/BF00127292.
L. E. Macaskie, J. M. Wates, and A. C. R. Dean, “Cadmium accumulation by a Citrobacter sp. immobilized on gel and solid supports: Applicability to the treatment of liquid wastes con-taining heavy metal cations,” Biotechnol Bioeng, vol. 30, no. 1, 1987, doi: 10.1002/bit.260300110.
L. E. Macaskie, A. C. R. Dean, and A. K. Cheetham, “Cadmium accumulation by a Citrobacter sp.: The chemical nature of the accumulated metal precipitate and its location on the bacterial cells,” J Gen Microbiol, vol. 133, no. 3, 1987, doi: 10.1099/00221287-133-3-539.
L. E. Macaskie, K. M. Bonthrone, and D. A. Rouch, “Phosphatase-mediated heavy metal ac-cumulation by a Citrobacter sp. and related enterobacteria,” FEMS Microbiol Lett, vol. 121, no. 2, 1994, doi: 10.1111/j.1574-6968.1994.tb07090.x.
P. R. Puranik and K. M. Paknikar, “Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: Characterization studies,” Biotechnol Prog, vol. 15, no. 2, 1999, doi: 10.1021/bp990002r.
T. J. Beveridge and R. G. E. Murray, “Sites of metal deposition in the cell wall of Bacillus sub-tilis,” J Bacteriol, vol. 141, no. 2, 1980, doi: 10.1128/jb.141.2.876-887.1980.
M. Tsezos and B. Volesky, “The mechanism of uranium biosorption by Rhizopus arrhizus,” Bi-otechnol Bioeng, vol. 24, no. 2, 1982, doi: 10.1002/bit.260240211.
B. Volesky, J. Weber, and J. M. Park, “Continuous-flow metal biosorption in a regenerable Sargassum column,” Water Res, vol. 37, no. 2, 2003, doi: 10.1016/S0043-1354(02)00282-8.
D. H. Bergey and D. R. Boone, Bergey’s Manual Of Systematic Bacteriology, Volume 2, Part 3, vol. 2. 2001.
E. KLEIN, “System der Bakterien,” Nature, vol. 61, no. 1585, 1900, doi: 10.1038/061464a0.
O. Shida, H. Takagi, K. Kadowaki, and K. Komagata, “Proposal for two new genera, Breviba-cillus gen. nov. and Aneurinibacillus gen. nov.,” Int J Syst Bacteriol, vol. 46, no. 4, 1996, doi: 10.1099/00207713-46-4-939.
P. Hugon et al., “Non-contiguous finished genome sequence and description of brevibacillus massiliensis sp. nov,” Stand Genomic Sci, vol. 8, no. 1, 2013, doi: 10.4056/sigs.3466975.
V. Sharma, P. K. Singh, S. Midha, M. Ranjan, S. Korpole, and P. B. Patil, “Genome sequence of Brevibacillus laterosporus strain GI-9,” 2012. doi: 10.1128/JB.06659-11.
M. J. Choi, J. Y. Bae, K. Y. Kim, H. Kang, and C. J. Cha, “Brevibacillus fluminis sp. nov., isolated from sediment of estuarine wetland,” 2010. doi: 10.1099/ijs.0.012351-0.
M. K. Kim, S. Sathiyaraj, R. K. Pulla, and D. C. Yang, “Brevibacillus panacihumi sp. nov., a β-glucosidase-producing bacterium,” Int J Syst Evol Microbiol, vol. 59, no. 5, 2009, doi: 10.1099/ijs.0.001248-0.
N. Parvez, L. K. Cornelius, and R. Fader, “Brevibacillus brevis peritonitis,” American Journal of the Medical Sciences, vol. 337, no. 4, 2009, doi: 10.1097/MAJ.0b013e3181891626.
S. H. Baek, W. T. Im, H. W. Oh, J. S. Lee, H. M. Oh, and S. T. Lee, “Brevibacillus ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field,” Int J Syst Evol Microbiol, vol. 56, no. 11, 2006, doi: 10.1099/ijs.0.64382-0.
K. Goto, R. Fujita, Y. Kato, M. Asahara, and A. Yokota, “Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 (=NRRL NRS-887) as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov,” Int J Syst Evol Microbiol, vol. 54, no. 2, 2004, doi: 10.1099/ijs.0.02906-0.
N. A. Logan et al., “Polyphasic identification of Bacillus and Brevibacillus strains from clinical, dairy and industrial specimens and proposal of Brevibacillus invocatus sp. nov,” Int J Syst Evol Microbiol, vol. 52, no. 3, 2002, doi: 10.1099/ijs.0.02081-0.
A. K. Panda, S. S. Bisht, S. DeMondal, N. Senthil Kumar, G. Gurusubramanian, and A. K. Panigrahi, “Brevibacillus as a biological tool: A short review,” 2014. doi: 10.1007/s10482-013-0099-7.
R. Pramila, “Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronel-lolis - Potential candidates for biodegradation of low density polyethylene (LDPE),” Journal of Bacteriology Research, vol. 4, no. 1, 2012, doi: 10.5897/jbr12.003.
N. Z. Jaouadi et al., “Biochemical and Molecular Characterization of a Serine Keratinase from Brevibacillus brevis US575 with Promising Keratin-Biodegradation and Hide-Dehairing Ac-tivities,” PLoS One, vol. 8, no. 10, 2013, doi: 10.1371/journal.pone.0076722.
S. Ebrahimi and A. A. Sepahi, “Exopolysacarid production by strain of Brevibacillus brevis: Potential applications in the treatment of hydrocarbons pollution and use in microbial en-hance oil recovery (MEOR),” 2008.
B. Tian, N. Li, L. Lian, J. Liu, J. Yang, and K. Q. Zhang, “Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4,” Arch Microbiol, vol. 186, no. 4, 2006, doi: 10.1007/s00203-006-0145-1.
L. Ruiu, I. Floris, A. Satta, and D. J. Ellar, “Toxicity of a Brevibacillus laterosporus strain lack-ing parasporal crystals against Musca domestica and Aedes aegypti,” Biological Control, vol. 43, no. 1, 2007, doi: 10.1016/j.biocontrol.2007.07.002.
D. D. C. Carvalho, M. Lobo Junior, I. Martins, P. W. Inglis, and S. C. M. Mello, “Biological con-trol of fusarium oxysporum f. sp. phaseoli by trichoderma harzianum and its use for common bean seed treatment,” Trop Plant Pathol, vol. 39, no. 5, 2014, doi: 10.1590/S1982-56762014000500005.
T. Arumugam, P. Senthil Kumar, R. V. Hemavathy, V. Swetha, and R. Karishma Sri, “Isolation, structure elucidation and anticancer activity from Brevibacillus brevis EGS 9 that combats Multi Drug Resistant actinobacteria,” Microb Pathog, vol. 115, 2018, doi: 10.1016/j.micpath.2017.12.061.
H. A. Alhassani, M. A. Rauf, and S. S. Ashraf, “Efficient microbial degradation of Toluidine Blue dye by Brevibacillus sp.,” Dyes and Pigments, vol. 75, no. 2, 2007, doi: 10.1016/j.dyepig.2006.06.019.
A. Vivas, B. Biró, T. Németh, J. M. Barea, and R. Azcón, “Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil,” Soil Biol Biochem, vol. 38, no. 9, 2006, doi: 10.1016/j.soilbio.2006.04.020.
A. Vivas, I. Vörös, B. Biró, E. Campos, J. M. Barea, and R. Azcón, “Symbiotic efficiency of au-tochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels,” Environmental Pollution, vol. 126, no. 2, 2003, doi: 10.1016/S0269-7491(03)00195-7.
A. Vivas, J. M. Barea, and R. Azcón, “Brevibacillus brevis isolated from cadmium- or zinc-contaminated soils improves in vitro spore germination and growth of Glomus mosseae under high Cd or Zn concentrations,” Microb Ecol, vol. 49, no. 3, 2005, doi: 10.1007/s00248-004-0044-4.
W. Lang et al., “Characterization of a new oxygen-insensitive azoreductase from Brevibacillus laterosporus TISTR1911: Toward dye decolorization using a packed-bed metal affinity reactor,” Bioresour Technol, vol. 150, 2013, doi: 10.1016/j.biortech.2013.09.124.
J. Ye, H. Yin, H. Peng, J. Bai, D. Xie, and L. Wang, “Biosorption and biodegradation of tri-phenyltin by Brevibacillus brevis,” Bioresour Technol, vol. 129, 2013, doi: 10.1016/j.biortech.2012.11.076.
J. M. Ruiz-Lozano and R. Azcón, “Brevibacillus, Arbuscular Mycorrhizae and Remediation of Metal Toxicity in Agricultural Soils,” 2011. doi: 10.1007/978-3-642-19577-8_12.
M. B. Kurade, T. R. Waghmode, and S. P. Govindwar, “Preferential biodegradation of struc-turally dissimilar dyes from a mixture by Brevibacillus laterosporus,” J Hazard Mater, vol. 192, no. 3, 2011, doi: 10.1016/j.jhazmat.2011.07.004.
M. B. Kurade, T. R. Waghmode, R. V. Khandare, B. H. Jeon, and S. P. Govindwar, “Biodegrada-tion and detoxification of textile dye Disperse Red 54 by Brevibacillus laterosporus and deter-mination of its metabolic fate,” J Biosci Bioeng, vol. 121, no. 4, 2016, doi: 10.1016/j.jbiosc.2015.08.014.
S. Banerjee, “Biotransformation and bioaccumulation of arsenic by Brevibacillus brevis iso-lated from arsenic contaminated region of West Bengal,” IOSR J Environ Sci Toxicol Food Tech-nol, vol. 3, no. 1, 2013, doi: 10.9790/2402-0310110.
I. Mallick, S. T. Hossain, S. Sinha, and S. K. Mukherjee, “Brevibacillus sp. KUMAs2, a bacterial isolate for possible bioremediation of arsenic in rhizosphere,” Ecotoxicol Environ Saf, vol. 107, 2014, doi: 10.1016/j.ecoenv.2014.06.007.
P. Wani, A. Olamide, N. Rafi, S. Wahid, I. Wasiu, and O. Sunday, “Sodium Alginate/Polyvinyl Alcohol Immobilization of Brevibacillus brevis OZF6 Isolated from Waste Water and Its Role in the Removal of Toxic Chromate,” Br Biotechnol J, vol. 15, no. 1, 2016, doi: 10.9734/bbj/2016/27341.
S. Wang, X. Lin, X. Huang, L. Zheng, and D. S. Zilda, “Screening and characterization of the alkaline protease isolated from PLI-1, a strain of Brevibacillus sp. collected from Indonesia’s hot springs,” Journal of Ocean University of China, vol. 11, no. 2, 2012, doi: 10.1007/s11802-012-1845-6.
C. K. Lo et al., “Engineering of the critical residues at the stereochemistry-gate loops of Brevi-bacillus agri dihydropyrimidinase for the production of l-homophenylalanine,” Process Bio-chemistry, vol. 44, no. 3, 2009, doi: 10.1016/j.procbio.2008.11.005.
C. Bozoglu, A. Adiguzel, H. Nadaroglu, D. Yanmis, and M. Gulluce, “Pur ification and Char acter ization of Laccase fr om newly isolated Ther m ophilic Br eviba cillus sp. ( Z1) and its applications in r em oval of Textile D yes,” 2013.
I. Mallick and S. K. Mukherjee, “Bioremediation potential of an arsenic immobilizing strain Brevibacillus sp. KUMAs1 in the rhizosphere of chilli plant,” Environ Earth Sci, vol. 74, no. 9, 2015, doi: 10.1007/s12665-015-4686-y.
N. Demir et al., “Purification and characterization of an alkaline pectin lyase produced by a newly isolated brevibacillus borstelensis (p35) and its applications in fruit juice and oil extrac-tion,” European Food Research and Technology, vol. 239, no. 1, 2014, doi: 10.1007/s00217-014-2198-8.
A. D. Chatziefthimiou, M. Crespo-Medina, Y. Wang, C. Vetriani, and T. Barkay, “The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs,” Extremophiles, vol. 11, no. 3, 2007, doi: 10.1007/s00792-007-0065-2.
L. Liao et al., “Biosorption and biodegradation of pyrene by Brevibacillus brevis and cellular responses to pyrene treatment,” Ecotoxicol Environ Saf, vol. 115, 2015, doi: 10.1016/j.ecoenv.2015.02.015.
L. Sulimma, A. Bullach, S. Kusari, M. Lamshöft, S. Zühlke, and M. Spiteller, “Enantioselective degradation of the chiral fungicides metalaxyl and furalaxyl by Brevibacillus brevis,” Chirality, vol. 25, no. 6, 2013, doi: 10.1002/chir.22158.
F. Takebe, K. Hirota, Y. Nodasaka, and I. Yumoto, “Brevibacillus nitrificans sp. nov., a nitrify-ing bacterium isolated from a microbiological agent for enhancing microbial digestion in sewage treatment tanks,” Int J Syst Evol Microbiol, vol. 62, no. 9, 2012, doi: 10.1099/ijs.0.032342-0.
J. G. Lim and D. H. Park, “Degradation of polyvinyl alcohol by Brevibacillus laterosporus: Metabolic pathway of polyvinyl alcohol to acetate,” J Microbiol Biotechnol, vol. 11, no. 6, 2001.
G. Li, Z. Liang, T. An, Z. Zhang, and X. Chen, “Efficient bio-deodorization of thioanisole by a novel bacterium Brevibacillus borstelensis GIGAN1 immobilized onto different parking mate-rials in twin biotrickling filter,” Bioresour Technol, vol. 182, 2015, doi: 10.1016/j.biortech.2015.01.120.
M. Abu Talha, M. Goswami, B. S. Giri, A. Sharma, B. N. Rai, and R. S. Singh, “Bioremediation of Congo red dye in immobilized batch and continuous packed bed bioreactor by Brevibacillus parabrevis using coconut shell bio-char,” Bioresour Technol, vol. 252, 2018, doi: 10.1016/j.biortech.2017.12.081.
R. K. Mohapatra, S. Pandey, H. Thatoi, and C. R. Panda, “Reduction of chromium(VI) by Ma-rine bacterium brevibacillus laterosporus under varying saline and pH conditions,” Environ Eng Sci, vol. 34, no. 9, 2017, doi: 10.1089/ees.2016.0627.
B. ren Yang, Z. qiu Sun, L. ping Wang, Z. xia Li, and C. Ding, “Kinetic analysis and degrada-tion pathway for m-dichlorobenzene removal by Brevibacillus agri DH-1 and its performance in a biotrickling filter,” Bioresour Technol, vol. 231, 2017, doi: 10.1016/j.biortech.2017.01.038.
H. N. Nassar, N. S. El-Gendy, M. A. Abo-State, Y. M. Moustafa, H. M. Mahdy, and S. A. El-Temtamy, “Desulfurization of dibenzothiophene by a novel strain Brevibacillus invocatus C19 isolated from Egyptian coke,” Biosci Biotechnol Res Asia, vol. 10, no. 1, 2013, doi: 10.13005/bbra/1090.
A. Chebbi et al., “Biodegradation of malodorous thiols by a Brevibacillus sp. strain isolated from a Tunisian phosphate factory,” FEMS Microbiol Lett, vol. 362, no. 14, 2015, doi: 10.1093/femsle/fnv097.
S. S. Gomare, G. K. Parshetti, and S. P. Govindwar, “ Biodegradation of Malachite Green by Brevibacillus laterosporus MTCC 2298 ,” Water Environment Research, vol. 81, no. 11, 2009, doi: 10.2175/106143009x407357.
X. Y. Er, T. W. Seow, C. K. Lim, Z. Ibrahim, and S. H. Mat Sarip, “Biological treatment of closed landfill leachate treatment by using Brevibacillus panacihumi strain ZB1,” in IOP Conference Series: Earth and Environmental Science, 2018. doi: 10.1088/1755-1315/140/1/012012.
K. Wei, H. Yin, H. Peng, G. Lu, and Z. Dang, “Bioremediation of triphenyl phosphate by Brevibacillus brevis: Degradation characteristics and role of cytochrome P450 monooxygen-ase,” Science of the Total Environment, vol. 627, 2018, doi: 10.1016/j.scitotenv.2018.02.028.
R. Hooda, N. K. Bhardwaj, and P. Singh, “Brevibacillus parabrevis MTCC 12105: a potential bacterium for pulp and paper effluent degradation,” World J Microbiol Biotechnol, vol. 34, no. 2, 2018, doi: 10.1007/s11274-018-2414-y.
N. Jebril, R. Boden, and C. Braungardt, “The isolation and identification of cadmium-resistant Brevibacillus agri C15,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1879/2/022015.
N. Jebril, R. Boden, and C. Braungardt, “Cadmium removal with mutant Brevibacillus Agri C15 CdRentrapped in calcium alginate gel: Multi-constituent ionic exchange,” in AIP Confer-ence Proceedings, 2023. doi: 10.1063/5.0150816.
N. Jebril, R. Boden, and C. Braungardt, “Determination of minimal inhibitory concentration of cadmium for Brevibacillus agri C15 and Brevibacillus agri C15 Cdr,” in AIP Conference Pro-ceedings, 2023. doi: 10.1063/5.0150818.
N. Jebril, R. Boden, and C. Braungardt, “Cadmium Removal with Mutant Brevibacillus Agri C15 CdrEntrapped in Calcium Alginate Gel: A New Process,” in IOP Conference Series: Earth and Environmental Science, 2021. doi: 10.1088/1755-1315/761/1/012028.
N. Jebril, R. Boden, and C. Braungardt, “Use of ultraviolet-light mutagenesis to generate a mutant with elevated cadmium resistance, B. agri C15 CdR,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1879/2/022043.
Published
How to Cite
Issue
Section
Citations
License
Copyright (c) 2024 Copyright (c) 2024 Creative Commons Attribution 4.0 International (CC-BY 4.0)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)
