PREPARING OF BIO-CEMENT MORTAR BY USING BACILLUS LICHENIFORMIS BACTERIAL CELLS

  • Views: 173
  • Authors

    • I.R. Ghanim Environmental Engineering Department, Baghdad University, Baghdad, Iraq.
    • S. E. Ebrahim Environmental Engineering Department, Baghdad University, Baghdad, Iraq.
      https://orcid.org/0000-0002-8954-1270
    https://doi.org/10.59807/jlsar.v3i1.40

    Keywords:

    Bio-Cement,, Mortar, , Bacillus Licheniformis and Bacterial Cells

    Abstract

    The incorporation of microbial-induced carbonate precipitation (MICP) in cement mortar is a good idea toward sustainable development. This study discussed the effect of adding MICP (Bacillus licheniformis urease bacteria) to cement mortar in different ways. Spray and admixed treatment with different bacterial concentration (optical density). The results proved that the addition of these microorganisms resulted in 17–37% increase in the compressive strength of cement mortar compared with control mix; this increment can be attributed to the deposition of calcium carbonate in the pores of cement mortar matrix. The results showed an increment of approximately 37% and 21% in the compressive strengths of the cement mortar admixed with 1 O.D and 0.5 O.D, respectively, on sequential culturing in comparison with the control mix. Moreover, the treatment of the cement mortar with the bacterial culture spray at 1 O.D resulted in 17% improvement in the compressive strength when compared with that of the control mix

    Downloads

    Download data is not yet available.

    References

    P. López-García, J. Kazmierczak, K. Benzerara, S. Kempe, F. Guyot, and D. Moreira, “Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey,” Extremophiles, vol. 9, no. 4, 2005, doi: 10.1007/s00792-005-0457-0. DOI: https://doi.org/10.1007/s00792-005-0457-0

    W. Y. Xia, M. L. Wei, Y. J. Du, and H. L. Wu, “Stabilization/Solidification of VOCs and SVOCs Contaminated Slurry Using Cement and Attapulgite,” 2016. doi: 10.1061/9780784480168.056. DOI: https://doi.org/10.1061/9780784480168.056

    S. A. Abo-El-Enein, A. H. Ali, F. N. Talkhan, and H. A. Abdel-Gawwad, “Application of microbial biocementation to improve the physico-mechanical properties of cement mortar,” HBRC Journal, vol. 9, no. 1, 2013, doi: 10.1016/j.hbrcj.2012.10.004. DOI: https://doi.org/10.1016/j.hbrcj.2012.10.004

    B. Lian, Q. Hu, J. Chen, J. Ji, and H. H. Teng, “Carbonate biomineralization induced by soil bacterium Bacillus megaterium,” Geochim Cosmochim Acta, vol. 70, no. 22, 2006, doi: 10.1016/j.gca.2006.08.044. DOI: https://doi.org/10.1016/j.gca.2006.08.044

    V. Achal, A. Mukherjee, and M. S. Reddy, “Microbial concrete: A way to enhance durability of building structures,” in 2nd International Conference on Sustainable Construction Materials and Technologies, 2010. doi: 10.1061/(asce)mt.1943-5533.0000159. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000159

    W. De Muynck, K. Cox, N. De Belie, and W. Verstraete, “Bacterial carbonate precipitation as an alternative surface treatment for concrete,” Constr Build Mater, vol. 22, no. 5, 2008, doi: 10.1016/j.conbuildmat.2006.12.011. DOI: https://doi.org/10.1016/j.conbuildmat.2006.12.011

    A. C. Mitchell and F. Grant Ferris, “The influence of bacillus pasteurii on the nucleation and growth of calcium carbonate,” Geomicrobiol J, vol. 23, no. 3–4, 2006, doi: 10.1080/01490450600724233. DOI: https://doi.org/10.1080/01490450600724233

    S. Dupraz, M. Parmentier, B. Ménez, and F. Guyot, “Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers,” Chem Geol, vol. 265, no. 1–2, 2009, doi: 10.1016/j.chemgeo.2009.05.003. DOI: https://doi.org/10.1016/j.chemgeo.2009.05.003

    Y. E. Saricicek, R. Gurbanov, O. Pekcan, and A. G. Gozen, “Comparison of microbially induced calcium carbonate precipitation eligibility using sporosarcina pasteurii and bacillus licheniformis on two different sands,” Geomicrobiol J, vol. 36, no. 1, 2019, doi: 10.1080/01490451.2018.1497732. DOI: https://doi.org/10.1080/01490451.2018.1497732

    D. Ariyanti, “Feasibility of Using Microalgae for Biocement Production through Biocementation,” J Bioprocess Biotech, vol. 02, no. 01, 2012, doi: 10.4172/2155-9821.1000111. DOI: https://doi.org/10.4172/2155-9821.1000111

    M. Abd Majid, M. Ali Fulazzaky, and C. Tin Lee, “A Review of Self-healing Concrete Research Development,” 2014.

    C. Lee et al., “Genomic analysis of bacillus licheniformis CBA7126 isolated from a human fecal sample,” Front Pharmacol, vol. 8, no. OCT, 2017, doi: 10.3389/fphar.2017.00724. DOI: https://doi.org/10.3389/fphar.2017.00724

    J. H. Jeong, Y. S. Jo, C. S. Park, C. H. Kang, and J. S. So, “Biocementation of concrete pavements using microbially induced calcite precipitation,” J Microbiol Biotechnol, vol. 27, no. 7, 2017, doi: 10.4014/jmb.1701.01041. DOI: https://doi.org/10.4014/jmb.1701.01041

    V. Stabnikov, “Production of Bioagent for Calcium-Based Biocement,” 2016. [Online]. Available: http://blast.ncbi.nlm.nih.gov DOI: https://doi.org/10.6000/1927-3037.2016.05.02.5

    R. K. Verma, L. Chaurasia, V. Bisht, and M. Thakur, “Bio-Mineralization and Bacterial Carbonate Precipitation in Mortar and Concrete,” Bioscience and Bioengineering, vol. 1, no. 1, 2015.

    ASTM International, C109/C109M-05. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. 2005.

    J. X. J. Zhang and K. Hoshino, “Optical transducers: Optical molecular sensing and spectroscopy,” in Molecular Sensors and Nanodevices, 2019. doi: 10.1016/b978-0-12-814862-4.00005-3. DOI: https://doi.org/10.1016/B978-0-12-814862-4.00005-3

    S. Joshi, S. Goyal, and M. S. Reddy, “Influence of nutrient components of media on structural properties of concrete during biocementation,” Constr Build Mater, vol. 158, 2018, doi: 10.1016/j.conbuildmat.2017.10.055. DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.055

    Published

    2022-06-30

    How to Cite

    [1]
    I. . Ghanim and S. E. . Ebrahim, “PREPARING OF BIO-CEMENT MORTAR BY USING BACILLUS LICHENIFORMIS BACTERIAL CELLS”, JLSAR, vol. 3, no. 1, pp. 23–29, Jun. 2022.

    Issue

    Section

    Articles

    Citations