Journal of Life Science and Applied Research (JLSAR) E-ISSN: 2959-8036

GENETIC DIVERSITY AND ANTIBIOTIC RESISTANCE PATTERNS OF PSEUDOMONAS AERUGINOSA ISOLATES FROM IRAQI HOSPITALS

H. F. Naji * ២ and M. A. Saleh

Check for updates

Article Info:

Received: Jan. 25, 2024 Revised: Feb. 18, 2024 Accepted: Apr. 06, 2024 Published: Jun. 30, 2024

DOI:

https://doi.org/10.59807/jlsar.v 5i1.93

How to Cite:

H. F. . . Naji and M. A. . Saleh, "GENETIC DIVERSITY AND ANTIBIOTIC RESISTANCE PATTERNS OF PSEUDOMO-NAS AERUGINOSA ISO-LATES FROM IRAQI HOSPI-TALS", JLSAR, vol. 5, no. 1, pp. 14–27, Jun. 2024.

Available From:

https://www.jlsar.com/index.php/journal/article/view/93

Copyright: © 2024 by the authors. Submitted for possible open-access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecom-mons.org/licenses/by/4.0/).

Department of Biology, College of Science, University of Babylon, Iraq. * Corresponding author: H. F. Naji, Department of Biology, College of Science, University of Babylon, Iraq. Email: dr.hasfad@gmail.com

Abstract: Forty-six isolates of Pseudomonas aeruginosa were isolated and identified from 150 samples of different patients who were admitted to the general hospitals in nine cites of Iraq during the period of Sep./2021 to Jan./2022. The isolates were given names as PA1 to PA46. The biofilm formation by these isolates, using microtiter plates assay and the correlation between biofilm grades and antibiotics resistance were also studied. It was found that 34 isolates were able to produce biofilm. To determinate the sites of blaTEM, blaCTX-M, and blaSHV genes on the genome of the isolates, the whole genomic DNA of nine isolates, PA1 to PA9 was extracted and the sequencing of these genes was achieved. The matching of the isolates with NCBI-Gen bank global Pseudomonas strains, showed that one isolate (PA1) was related to UAE, two isolates (PA2 and PA3) were related to India, three isolates (PA4, PA5 and PA6) were related to Egypt and also three isolates (PA7, PA8 and PA9) were related to Iran. Hence, the variable frequencies in the sequencing of blaTEM, blaCTX-M, and blaSHV genes need further studies for creating the genetic diversity map of P. aeruginosa.

Keywords: P. aeruginosa, multidrug-resistance, DNA sequencing, virulence factors, biofilm, phylogenetic tree and phylogenetic origin.

1. Introduction

P. aeruginosa is opportunistic pathogen, that cause various diseases and frequently resistant to many commonly used antibiotics. This bacterium accounts for 10-15% of the nosocomial infections worldwide and is considered the third most common organism associated with hospital-acquired infections. Extended spectrum β -lactamases (ESBLs), which produced by multidrug-resistant (MDR) P. aeruginosa, are a critical problem that demands efficient infection management strategies to break their spread [1].

The prevalence of clinical isolates varies widely around the world and changes fast over time, it is a leading to many debilitating infections, including wound infections, pneumonia, and keratitis [2]. The numerous resistance mechanisms, particularly against last-resort drugs, make treating associated infections challenging, resulting in treatment failure, prolonged hospitalization, and high morbidity and mortality [3]. P. aeruginosa has

ability to form biofilms on medical devices, which consider one of its virulence factors [4]. [5] reported that MDR strains of P. aeruginosa has become the common problem, especially in the chronic cases because of the development in the resistance mechanisms of antibiotics. P. aeruginosa, develop a group of enzymes known as ESBLs, which are capable of hydrolyzing antimicrobial drugs such as penicillins, cephalosporins, monobactams, and carbapenems, and causing resistance to them [6].

The most common ESBL genes found in P. aeruginosa are SHV, CTX-M, and TEM kinds, which all belong to the sulfhydryl variable (SHV) family [1]. A phylogenetic tree, also known as an evolutionary tree or phylogeny, is used in a branch of biology that analyzes morphological data matrices and molecular sequencing data to identify how various groups of animals have evolved over time. It has been used to explore the biodiversity, evolution, genetics, and ecology among groups of organisms [7]. Hence, the present work was focused on the phylogenetic origins of P. aeruginosa isolates in Iraq.

2. Materials and Methods

Collection of Samples: One hundred and fifty samples of wound, diabetic foot and burn infections of both genders and different ages of patients were collected from different cities of Iraq during the period of September 2021 to January 2022.

Isolation and Identification: The isolation and identification were carried out depending on [1].

Detection of Biofilm Production: The biofilm prodauction of the isolates were determined according to [8].

DNA Extraction: Whole genomic DNA was extracted according to the manufacturer standard for *P. aeru*ginosa molecular identification (Favorgen, Taiwan).

PCR Primers and Conditions: PCR cycling thermal program parameters were used for detection of *blatem*, *blactx-m*, and *blashv* genes. The Macrogen (South Korea) manufactured of PCR primers are shown in Table 1.

Primer		Sequence (5>3)	Amplicon	Conditions	Cycle	Source
			size (bp)	(D, A and E)	No.	
TEM	F	GAGTATTCAACATT	861	94°C/1 min.	35	
		CCGTGTC		57°C/1 min.		
	R	TAATCAGTGAGGCAC-		72°C/2 min.		
		CTATCTC				
SHV	F	AAGATCCACTATCGCCAG-	231	94°C/30 sec	35	(Bokaeian <i>et a</i> l.,
		CAG		64°C/1 min.		2015)
	R	ATTCAG-		72°C/2 min.		
		TTCCGTTTCCCAGCGG		-, -,		_
CTXm1	F	GACGATGTCACTGGCTGAGC	499	94°C/1min.	35	-
	R	AGCCGCCGACGCTAATACA		57°C/1min.		
				72°C/1min.		
	F	GGGGGATCTTCGGACCTCA	956		35	
P.aeru	R	TCCTTAGAGTGCCCACCCG		95°C/1min		(Spilker et al.,
				61°C/45sec		2004)
				72°C/1min		

Table 1: PCR primers and their conditions.

Abbreviations: D, Denaturation; A, Annealing; E, Extension; F, Forward primer; R, Reverse primer.

Preparation of PCR Reaction Mixture: The reaction mixture of PCR was performed according to [1].

Electrophoresis: The amplified products of PCR were run on 1% of horizontal agarose gel at 75 volts, stained with red safe dye for 1 hour. 5 μ l of each product of the isolates plus 1 μ l of loading dye were loaded in the wells of the gel. 100-1500 bp DNA ladder (Promega, USA) was used to detect the size of amplified gene fragments. The DNA bands were imaged using a gel documentation system (Biometra-Germany) as described by [9].

DNA Sequencing: To study the genetic variation of *P. aeruginosa* isolates, DNA sequencing was performed. The PCR products were sent to Macrongen company in Korea in ice bag by DHL. The homology sequence identity and the mutation analysis were conducted using NCBI BLAST analysis. *blactx-m*, *blashv* and *blatem* genes of *P. aeruginosa* isolates of the current study were registered in NCBI-Gen Bank data base with accession numbers (Table 5).

Phylogenetic Tree: The phylogenetic tree was designed using the neighbor method with the help of MEGA4 software program and the neighbor-joining phylogeny tree [10]. The evolutionary distances are computed using the maximum composite likelihood method [7] and the reliability of the trees were determined by 1000 data set bootstrap resembling [11].

3. Results and Discussion:

One hundred and fifty clinical specimens of burns, injuries and feet of diabetics who were admitted to the general hospitals in nine cites of Iraq which included Erbil, Ninawa, Kirkuk, Diyala, Baghdad, Babylon, Muthanna, DhiQar and Basra were collected. Forty-six isolates of *P. aeruginosa* (PA1 to PA46) were isolated from the specimens of these isolates, 23 (50%) were isolated from burns, 17 (37%) were isolated from injuries, and 6 (13%) were isolated from feet of diabetics. The isolates were identified depending on traditional methods (morphological features of the colonies and the cells, biochemical tests, Vitek 2 compact) and finally, the confirmation was achieved via PCR. Thirty isolates were tested for biofilm formation using tissue culture plate (TCP) assay, as it is a semi-quantitative microtiter plate. The interpretation of biofilm formation was done and the biofilm capacity of *P. aeruginosa* was demonstrated in Table 2. The results showed that out of 46 isolates only 7 (%14) isolates were 27 (59%) (PA1, PA2, PA4, PA6, PA7, PA10, PA11, PA14, PA15, PA17, PA18, PA21, PA22, PA23, PA24, PA27, PA29, PA30, PA33, PA34, PA35, PA36, PA38, PA41, PA44 and PA46), and the negative isolate were 12 (27%) as shown in Figure 1.

Isolate No.		Specimen type	Geographic region	OD (nm)	Grade
P. aeruginosa	PA1	Burn	Muthanna	0.148	weak
P. aeruginosa	PA2	Injury	Baghdad	0.102	weak
P. aeruginosa	PA3	Diabetic Foot	Ninawa	0.227	moderate
P. aeruginosa	PA4	Burn	DhiQar	0.11	weak
P. aeruginosa	PA5	Injury	Kirkuk	0.247	moderate
P. aeruginosa	PA6	Injury	Diyala	0.204	weak
P. aeruginosa	PA7	Diabetic Foot	Busra	0.107	weak
P. aeruginosa	PA8	Burn	Erbil	0.105	weak
P. aeruginosa	PA9	Injury	Babylon	0.206	moderate
P. aeruginosa	PA10	Burn	Ninawa	0.149	weak
P. aeruginosa	PA11	Diabetic Foot	DhiQar	0.135	weak
P. aeruginosa	PA12	Injury	Diyala	0.269	moderate

Table 2: Biofilm forming capacity of P. aeruginosa isolates.

Journal of Life Science and Applied Research, Vol. 5, No. 1, Jun. 2024

P. aeruginosa	PA13	Injury	Baghdad	0.298	moderate
P. aeruginosa	PA14	Injury	Basra	0.132	weak
P. aeruginosa	PA15	Burn	Kirkuk	0.147	weak
P. aeruginosa	PA16	Diabetic Foot	Diyala	0.224	moderate
P. aeruginosa	PA17	Burn	DhiQar	0.103	weak
P. aeruginosa	PA18	Burn	Muthanna	0.112	weak
P. aeruginosa	PA19	Burn	Basra	0.203	moderate
P. aeruginosa	PA20	Burn	Basra	0.095	non
P. aeruginosa	PA21	Injury	Muthanna	0.143	weak
P. aeruginosa	PA22	Burn	Erbil	0.129	weak
P. aeruginosa	PA23	Burn	Baghdad	0.131	weak
P. aeruginosa	PA24	Burn	Baghdad	0.107	weak
P. aeruginosa	PA25	Diabetic Foot	Diyala	0.095	non
P. aeruginosa	PA26	Injury	Baghdad	0.076	non
P. aeruginosa	PA27	Injury	Erbil	0.118	weak
P. aeruginosa	PA28	Burn	Babylon	0.089	non
P. aeruginosa	PA29	Diabetic Foot	Basra	0.103	weak
P. aeruginosa	PA30	Injury	Kirkuk	0.108	weak
P. aeruginosa	PA31	Burn	DhiQar	0.093	non
P. aeruginosa	PA32	Burn	DhiQar	0.09	non
P. aeruginosa	PA33	Burn	Muthanna	0.137	weak
P. aeruginosa	PA34	Burn	Baghdad	0.11	weak
P. aeruginosa	PA35	Burn	Muthanna	0.102	weak
P. aeruginosa	PA36	Burn	Kirkuk	0.11	weak
P. aeruginosa	PA37	Burn	Kirkuk	0.096	non
P. aeruginosa	PA38	Burn	Babylon	0.10	weak
P. aeruginosa	PA39	Injury	Baghdad	0.086	non
P. aeruginosa	PA40	Burn	Babylon	0.09	non
P. aeruginosa	PA41	Burn	DhiQar	0.126	weak
P. aeruginosa	PA42	Burn	Diyala	0.079	non
P. aeruginosa	PA43	Injury	Kirkuk	0.075	non
P. aeruginosa	PA44	Injury	Ninawa	0.114	weak
P. aeruginosa	PA45	Burn	Basra	0.095	non
P. aeruginosa	PA46	Burn	Babylon	0.167	weak

The biofilms were important to protect the bacteria against antimicrobial agents, Therefore, the discrepancy of results between different isolates in this study may be attributed to many factors such as, the type of clinical specimens from which the isolates were obtained and also the differences of isolates capability to form biofilm. The primary number of cells that succeeded in adherence and the differences of quality and quantity of autoinducers (quorum sensing signaling molecules) that were produced from each isolate may also play an essential and an important role.

Figure 1: Biofilm formation grade of *P. aeruginosa* isolates

It was observed in Figure 1 that a variable activity in biofilm formation was found. This result has an agreement with the result of [4] who noted that *P. aeruginosa* isolates exhibited variable biofilm productions. TCP assay was a simple and rapid method to quantify biofilm formation of different bacterial strains. Crystal violet is a basic dye known to bind to negatively charged molecules on the cell surface as well as nucleic acids and polysaccharides, and therefore gives an overall measure of the whole biofilm. It has been used as a standard technique for rapidly accessing cell attachment and biofilm formation in a range of Gram positive and Gramnegative bacteria [12]. In the current study regarding to the percentages between biofilm formation and antibiotic resistance, it was showed that not all the isolates were 100 % for biofilm formation and multi-drug resistant (Table 3. The biofilm risk originated from the fact that, it is the main driver of persistence of chronic infections. Many of *P. aeruginosa* that caused chronic infections have been linked to the biofilm mode of growth and such infections are difficult to eradicate because bacteria in biofilms have a higher tolerance against antimicrobial agents than their planktonic counterparts.

Biofilm grade	Isolate No.	%
Non	13	28
Weak	27	59
Moderate	6	13
Total	46	100

Table 3: The grade and percentage of biofilm formation of P. aeruginosa isolates.

High resistance to the antibiotics with different grades of biofilm formation was recorded in this study (Table 4), where the difference between antibiotic resistance and the grade of biofilms was no significant difference. This was a reason or evidence that once a biofilm exists in any grade, it is sufficient to resist different lifetime antibiotics and this was what distinguishes of *P. aeruginosa* and makes them multi-drug resistant.

Antibiotic			Biof	film grade			P. value
	Non		Weak		Modera	ate	
	No.	%	No.	%	No.	%	
Aztreonam	13	28	27	59	6	13	0.214
Imipinem	13	28	27	59	6	13	0.214
Piperacillin	13	28	27	59	6	13	0.214
Cefepime	13	28	27	59	6	13	0.214
Tobramycin	13	28	27	59	6	13	0.214
Netilmicin	13	28	27	59	6	13	0.214
Ofloxacin	13	28	27	59	6	13	0.214
Doripenem	5	29	10	59	2	12	0.542
Meropenem	6	32	9	47	4	21	0.76
Ceftazidim	12	30	23	57	5	13	0.293
Piper./Tazo.	4	33	8	67	0	0	0.471
Amikacin	9	26	19	56	6	18	0.414
Gentamicin	13	31	23	55	6	14	0.306
Ciprofloxacin	4	20	11	55	5	25	0.605
Norfloxacin	3	17	13	72	2	11	0.401
Levofloxacin	7	39	9	50	2	11	0.601
Gatifloxacin	4	32	7	53	2	15	0.673

Table 4: Correlation between biofilm grade and antibiotic resistance of P. aeruginosa isolates.

There are two key reasons why the use of traditional antibiotic therapy makes biofilm bacteria hard to eliminate. Biofilm polysaccharide which is also referred to as slime, is a polymeric conglomeration generally composed of proteins and polysaccharides [4]. The extracellular exopolysaccharide of biofilms of *P. aeruginosa* is mainly composed of alginate. It has been stressed that matrix provides a barrier leading to enhance resistance to host defense mechanism as well as to antibiotics causing treatment failure and also promote adherence to epithelial cells. Biofilm formation provides bacteria with a means of persistently colonizing either living or inert surfaces within a human host [13]. The results of the current study were agreed with [14] study. Beta-lactam antibiotics have been shown to induce or increase production of biofilm volume and increase alginate production in *P. aeruginosa* biofilms, which increase the genetic exchange and the spread of antibiotic resistance genes.

To obtain a trimmed sequence, each data sequence was trimmed from beginning to ending, according to normal waves. When compared with NCBI- Blast, this sequence has a high level of identity to other global sequence data. The waves produced by scanning the sequences indicate the strong and weak regions of the sequences, which are then trimmed, resulting in increased identity with global sequences at NCBI-Blasting. The results of nucleotide sets are checked and confirmed by using NCBI-Basic Local Alignment Search Tool (BLAST analysis)-nucleotide Blast-Search a nucleotide database using a nucleotide query online, which was a perfect program and gave the exact results of identity percentage with other world strains. Sequence alignment must be performed using *blactix-m*, *blashv* and *blatem* genes of *P. aeruginosa* sequences databases information recorded in Gen Bank to find identity and similarity score degrees of genes and compared with the local isolates of this study. The results of sequences alignment of the nine local isolates (PA1 to PA9, isolated from different regions of Iraq, Table 2 and 6) showed identity ranging from 95% to 100% (Figure. 2 to 10 and Table 5), good query cover, and max score with other world strains of *P. aeruginosa*.

Isolate No.	Reference of	the isolate with highest p	percentage similarity (%)
	Gene	Accession No.	Similarity (%)	Origin
P. aeruginosa PA1	blaстх-м	KY792758.1	99 %	UAE
P. aeruginosa PA2	blaстх-м	KU139118.1	98 %	India
P. aeruginosa PA3	blaстх-м	KU139120.1	95 %	India
P. aeruginosa PA4	blasнv	KY640504.1	96 %	Egypt
P. aeruginosa PA5	blasнv	KY640504.1	100 %	Egypt
P. aeruginosa PA6	<i>bla</i> sнv	KY640504.1	100 %	Egypt
P. aeruginosa PA7	blaтем	MG755406.1	99 %	Iran
P. aeruginosa PA8	blaтем	MG755406.1	99 %	Iran
P. aeruginosa PA9	blaтем	MG755406.1	99 %	Iran

Table 5: Alignment results of P. aeruginosa isolates with reference isolates retired from NCBI.

Score	tc/193	Expect	Identities	Gaps 0/199(0%)	Strand Plus/Plus
221 01	13(155) 20-50	197/199(9970)	0/135(070)	rius/rius
Query	1	AGCTGGTGACATGGA	TGAAAGGCAATACCACCG	GTGCAGCGAGCAGTCAGG	CTGGACTGC 60
Sbjct	617	AGCTGGTGACATGGA	rgaaaggcaataccacco	GTGCAGCGAGCATTCAGG	TGGACTGC 676
Query	61	CTGATTCCTGGGTTG	TGGGGGATAAAACCGGCA	AGCGGTGGCTATGGCACCAC	CAACGATA 120
Sbjct	677	CTGCTTCCTGGGTTG	IGGGGGATAAAACCGGCA	GCGGTGGCTATGGCACCAC	CAACGATA 736
Query	121	TCGCGGTGATCTGGC		TGATTCTGGTCACTTACT	CACCCAGC 180
Sbjct	737	TCGCGGTGATCTGGC	CAAAAGATCGTGCGCCGC	TGATTCTGGTCACTTACTT	CACCCAGC 796
Query	181	CTCAACCTAAGGCAG	AAAG 199		
Sbjct	797	CTCAACCTAAGGCAG	AAAG 815		

Figure 2: Basic local alignment of P. aeruginosa blaCTX-M gene of the isolate PA1 with high similarity NCBI-BLAST of P. aeruginosa strain SKGH_46 B-lactamase (blaCTX-M) gene, partial sequence (accession number: KY792758.1 in Gen Bank).

Score		5	Expect	Ide	ntities	5	Gaps	St	rand
390 bi	390 bits(203)		3e-106	221/225(98%) 2/225(0%) Plus		us/Plus			
Query	235	AGCTGGT	I GACATGO	ATGAAAG	GCAATACCAG	CGGTGCAG	GCGAGCAGT	CAGGCTGGAC	TGC 294
5bjct	214	AGCTGGT	GACATGO	ATGAAAG	GCAATACCAC	CGGTGCAC	GCGAGCATT	CAGGCTGGAC	TGC 273
Query	295	CTGATTO	CTGGGTT	GTGGGGG	ATAAAACCGG	CAGCGGT	GCTATGGC	ACCACCAACG	ATA 354
Sbjct	274	ctictto	cteett	dteeeee	ATAAAACCGG	cascoste	GCTATGGC	ACCACCAACG	ÁTÁ 333
Query	355	TCGCGGT			ATCGTGCGCG	GCTGATTC	TGGTCACT		AGC 414
Sbjct	334	TCGCGGT	GATCTGO	CCAAAAAG	ATCGTGCGCC	GCTGATTO	TGGTCACT	TACTTCACCC	AGC 393
Query	415	СТСААСС		GAAAGGC	CGTCGCGAT	TTATTAG	GTCGGC	459	
Sbjct	394	ĊŤĊĂĂĊĊ	TAAGGCA	GAAA-GC	ĊĠŦĊĠĊĠĂŦĊ	-TATTAGO	cĠŦĊĠĠĊ	436	

Figure 3: Basic local alignment of P. aeruginosa blaCTX-M gene of the isolate PA2 with high similarity NCBI-BLAST of P. aeruginosa strain PA137 B-lactamase (blaCTX-M) gene, partial sequence (accession number: KU139118.1 in GenBank).

Score 465 hit	5(242	١	Expect 9e-129	Identities 268/281(95%)	Gaps 0/281(0%)	Strand Plus/Plu	IS
100 01	un al	/	50 125	200,201(3570)	0,201(0,0)	1100/110	
Query	174	GGCGCTAA	CGCTGAGGA	ATCTGACGATCGGTT	AGGCCGTGGGCGACACCC	CACGGGGCTAA	233
5bjct	152	GGCGCAAA	стстессе	ATCTGACGCTGGGTA	AAGCATTGGGCGACAGCC	AACGGGCGCA	2 1 1
Query	234	GCTGGTGA	CATGGATG	AAGGCAATACCACCG	GTGCAGCGAGCATTCAGG	CTGGACTGCC	293
Sbjct	212	GCTGGTGA	CATGGATG	AAGGCAATACCACCO	GTGCAGCGAGCATTCAGG	CTGGACTGCC	271
Query	294	тесттсст	GGGTTGTG	GGGATAAAACCGGCA	GCGGTGGCTATGGCACCA	CCAACGATAT	353
Sbjct	272	тосттсст	GGGTTGTG	GGGATAAAACCGGCA	GCGGTGGCTATGGCACCA	CCAACGATAT	331
Query	354	CGCGGTGA	TCTGGCCA/	AAGATCGTGCGCCGC	TGATTCTGGTCACTTACT	TCACCCAGCC	413
Sbjct	332	CGCGGTGA	TCTGGCCA	AAGATCGTGCGCCGC	TGATTCTGGTCACTTACT	TCACCCAGCC	391
Query	414	тсаасста	AGGCAGAA	AGCCGTCGCGATGTAT	TAGCGTCGG 454		
Sbjct	392	ТСААССТА	AGGCAGAA/	AGCCGTCGCGATGTAT	TAGCGTCGG 432		

Figure 4: Basic local alignment of P. aeruginosa blaCTX-M gene of the isolate PA3 with high similarity NCBI-BLAST of P. aeruginosa strain Palg29 B-lactamase (blaCTX-M) gene, partial sequence (accession number: KU139120.1 in Gen Bank).

Score		E	xpect	Identities	Gaps	Strand		
213 bi	213 bits(115)		e-53	128/134(96%)	1/134(09	%) Plus/Pl	Plus/Plus	
Query	1	AACTCTGTG		CATTACCATGAGCGA	TAACAGCGCCGCTAA	TCTGCTGCTGGACA	60	
Sbjct	227	AACTCTGTG	ĊĊĠĊĊĠĊ	CATTACCATGAGCGA	TAACAGCGCCGCCAA	tctéctéctéécé	286	
Query	61	CCGTCGGCG		TGCTTTGACTGCCTT	TTGCGCCAGATCGG	CGACAACGTCACCC	1 1 9	
Sbjct	287	ccetcece	ŚĊĊĊĠĠ	adgattdactdcctt	ttigegeedagatege	ĊĠĂĊĂĂĊĠŦĊĂĊĊĊ	346	
Query	120	GCCTTGACC	GCTGG	133				
Sbjct	347	GCCTTGACC	GCTGG	360				

Figure 5: Basic local alignment of P. aeruginosa blaSHV gene of the isolate PA4 with high similarity NCBI-BLAST of P. aeruginosa strain E14PAMO B-lactamase (blaSHV -11) gene, partial sequence (accession number: KY640504.1 in GenBank).

Score		Expect	Identities	Gaps	Strand	
248 bit	ts(134) 6e-64	134/134(100%)	0/134(0%)	Plus/Pl	us
Query	1	AACTCTGTGCCGCCG	CCATTACCATGAGCGATAAC	CAGCGCCGCCAATCTGCT	GCTGGCCA	60
Sbjct	227	AACTCTGTGCCGCCG	CCATTACCATGAGCGATAAC	CÁGCGCCGCCAATCTGCT	GCTGGCCA	286
Query	61	CCGTCGGCGGCCCCG	CAGGATTGACTGCCTTTTTC	GCGCCAGATCGGCGACAA	CGTCACCC	120
Sbjct	287	ccetceeceeccce	CAGGATTGACTGCCTTTTTC	GCGCCAGATCGGCGACAA	ĊĠŦĊĂĊĊĊ	346
Query	121	GCCTTGACCGCTGG	134			
Sbjct	347	GCCTTGACCGCTGG	360			

Figure 6: Basic local alignment of P. aeruginosa blaSHV gene of the isolate PA5 with high similarity NCBI-BLAST of P. aeruginosa strain E14PAMO B-lactamase (blaSHV -11) gene, partial sequence (accession number: KY640504.1 in GenBank).

Score		Expect	Identities	Gaps	Strand	
246 bit	ts(133) 2e-63	133/133(100%)	0/133(0%)	Plus/Plus	
Query	1	AACTCTGTGCCGCCC	GCCATTACCATGAGCGATAA	CAGCGCCGCCAATCTGCT	GCTGGCCA 6	0
Sbjct	227	AACTCTGTGCCGCC	GCCATTACCATGAGCGATAA	CAGCGCCGCCAATCTGCT	ĠĊŦĠĠĊĊĂ 2	86
Query	61	ссетсевсевссссо	GCAGGATTGACTGCCTTTT	GCGCCAGATCGGCGACAA	CGTCACCC 1	20
Sbjct	287	ccetceeceeccc	GCAGGATTGACTGCCTTTTT	GCGCCAGATCGGCGACAA	CGTCACCC 3	46
Query	121	GCCTTGACCGCTG	133			
Sbjct	347	GCCTTGACCGCTG	359			

Figure 7: Basic local alignment of P. aeruginosa blaSHV gene of the isolate PA6 with high similarity NCBI-BLAST of P. aeruginosa strain E14PAMO B-lactamase (blaSHV -11) gene, partial sequence (accession number: KY640504.1 in GenBank).

Score 913 bi	ts(494)	Expect 0.0	Identities 498/500(99%)	Gaps 0/500(0%)	Strand Plus/Plus
Query	ı	TTTGCTC.	ACCCAGAAAA	GCTGGTGAAAGTAAAAGATGC	TGAAGATCAGTTGGGT	SCACGA 60
Sbjct	16	TTTGCTC.	ACCCAGAAA	GCTGGTGAAAGTAAAAGATGC	TGAAGATCAGTTGGGT	SCACGA 75
Query	61	GTGGGTT.	ACATCGAACT	I GGATATCAACAGCGGTAAGAT	CCTTGAGAGTTTTCGC	CCCGAA 120
Sbjct	76	GTGGGTT.	ACATCGAACT	IGGATCTCAACAGCGGTAAGAT	CCTTGAGAGTTTTCGCC	CCGAA 135
Query	121	GAACGTT	TTCCAATGAT	GAGCACTTTTAAAGTTCTGCT	ATGTGGCGCGGTATTAT	CCCGT 180
Sbjct	136	GAACGTT	HCCAATGAT	rgAGCACTTTTAAAGTTCTGCT	ATGTGGCGCGGTATTA	TCCCGT 195
Query	181	ATTGACG	CCGGGGCAAGA	AGCAACTCGGTCGCCGCATACA	CTATTCTCAGAATGACT	TTGGTT 240
Sbjct	196	ATTGACG	CCGGGCAAG/	AGCAACTCGGTCGCCGCATACA	CTATTCTCAGAATGAC	TTGGTT 255
Query	241	GAGTACT	CACCAGTCAG	AGAAAAGCATCTTACGGATGG	CATGACAGTAAGAGAA	TATAC 300
Sbjct	256	GAGTACT	CACCAGTCAG	CAGAAAAGCATCTTACGGATGG	CATGACAGTAAGAGAA	TATGC 315
Query	301	AGTOCTO	CCATAACCAT	rgagtgataacactgcggccaa	CTTACTTCTGACAACGA	АТСОСА 360
Sbjct	316	AGTGCTG	CATAACCAT	rgagtgataacactgcggccaa	CTTACTTCTGACAACG/	ATCGGA 375
Query	361	GGACCGA	AGGAGCTAAG	COCTITITIOCACAACCTOOO	GGATCATGTAACTCGC	TTGAT 420
Sbjct	376	GGACCGA	AGGAGCTAA	CGCTTTTTTGCACAACATGGG	GGATCATGTAACTCGC	TTGAT 435
Query	421	CGTTGGG.	AACCGGAGCT	IGAATGAAGCCATACCAAACGA	CGAGCGTGACACCACGA	ATGCCT 480
Sbjct	436	CGTTGGG.	AACCGGAGCT	IGAATGAAGCCATACCAAACGA	CGAGCGTGACACCACGA	ATGCCT 495
Query	481	GTAGCAA	TGGCAACAAG	GTT 500		
Sbjct	496	GTAGCAA	TGGCAACAAG	GTT 515		

Figure 8: Basic local alignment of P. aeruginosa blaTEM gene of the isolate PA7 with high similarity NCBI-BLAST of P. aeruginosa strain F35 B-lactamase (blaTEM) gene, partial sequence (accession number: MG755406.1in GenBank).

Score 913 bit	ts(494))	Expect 0.0	Identities 498/500(99%)	Gaps 0/500(0%)	Strand Plus/Plus
Query	1	TTTGCTC	ACCCAGAAA	GCTGGTGAAAGTAAAAGATGC	TGAAGATCAGTTGGGT	GCACGA 60
Sbjct	16	TTTGCTC	ACCCAGAAA	CGCTGGTGAAAGTAAAAGATGC	TGAAGATCAGTTGGGT	GCACGA 75
Query	61	GTGGGTT	ACATCGAACT	IGGATCTCAACAGCGGTAAGAT	CCTTGAGAGTTTTCGC	CCCGAA 120
Sbjct	76	GTGGGTT	ACATCGAACT	IGGATCTCAACAGCGGTAAGAT	CCTTGAGAGTTTTCGC	CCCGAA 135
Query	121	GAACGTT	TTCCAATGAT	IGAGCACTTTTAAAGTTCTGCT	ATGTGGTGCGGTATTA	TCCCGT 180
Sbjct	136	GAACGTT	TTCCAATGA	IGAGCACTTTTAAAGTTCTGCT	ATGTGGCGCGGGTATTA	TCCCGT 195
Query	181	ATTGACG	CCGGGCAAG/	AGCAACTCGGTCGCCGCATACA	CTATTCTCAGAATGAC	TTGGTT 240
bjct	196	ATTGACG	CCGGGCAAG/	AGCAACTCGGTCGCCGCATACA	CTATTCTCAGAATGAC	TTGGTT 255
Query	241	GAGTACT	CACCAGTCA	CAGAAAAGCATCTTACGGATGG	CATGACAGTAAGAGAA	ттатос зоо
Sbjct	256	GAGTACT	CACCAGTCA	CAGAAAAGCATCTTACGGATGG	CATGACAGTAAGAGAA	TTATGC 315
Query	301	AGTGCTG	CCATAACCAT	IGAGTGATAACACTGCTGCCAA	CTTACTTCTGACAACG	ATCGGA 360
bjct	316	AGTGCTG	CCATAACCAT	TGAGTGATAACACTGCGGCCAA	CTTACTTCTGACAACG	ATCGGA 375
Query	361	GGACCGA	AGGAGCTAA	CGCTTTTTTGCACAACATGGG	GGATCATGTAACTCGC	CTTGAT 420
Sbjct	376	GGACCGA	AGGAGCTAA	CGCTTTTTTGCACAACATGGG	GGATCATGTAACTCGC	CTTGAT 435
Query	421	CGTTGGG	AACCGGAGC	IGAATGAAGCCATACCAAACGA	CGAGCGTGACACCACG	ATGCCT 480
Sbjct	436	CGTTGGG	AACCGGAGC	FGAATGAAGCCATACCAAACGA	CGAGCGTGACACCACG	ATGCCT 495
Query	481	GTAGCAA	TGGCAACAA	GTT 500		
Sbjct	496	GTAGCAA	TGGCAACAA	GTT 515		

Figure 9: Basic local alignment of P. aeruginosa blaTEM gene of the isolate PA8 with high similarity NCBI-BLAST of P. aeruginosa strain F35 B-lactamase (blaTEM) gene, partial sequence (accession number: MG755406.1in GenBank).

Score 891 bi	ts(482)	Expect 0.0	Identities 494/500(99%)	Gaps 0/500(0%)	Strand Plus/Plus
Query	1	TTTGCTC		GCTGGTGAAAGTAAAAGATGC	TGAAGATCAGTTGGGT	GCACGA 60
Sbjct	16	TTTGCTC	ACCCAGAAAA	GCTGGTGAAAGTAAAAGATGC	TGAAGATCAGTTGGGT	GCACGA 75
Query	61	GTGGGTT		GGATATCAACAGCGGTAAGAT		CCCGAA 120
Sbjct	76	dtdddtt	ACATCGAACT	GGATCTCAACAGCGGTAAGAT	CCTTGAGAGTTTTCGC	CCCGAA 135
Query	121	GAACGTT	TTCCAATGAT	GAGCACTTTTAAAGTTCTGCT	ATGTGGCGCGGTATTA	TCCCGT 180
Sbjct	136	GAACGTT	TTCCAATGAT	GAGCACTTTTAAAGTTCTGCT	ATGTGGCGCGGGTATTA	TCCCGT 195
Query	181	ATTGACG	CCGGGCGAGA		CTATTCTCAGAATGAC	TTGATT 240
Sbjct	196	ATTGACG	CCGGGCAAGA	AGCAACTCGGTCGCCGCATACA	CTATTCTCAGAATGAC	TTGGTT 255
Query	241	GAGTACT	CACCAGTCAC		CATGACAGTAAGAGAA	TTATGC 300
Sbjct	256	GAGTACT	CACCAGTCAC	AGAAAAGCATCTTACGGATGG	CATGACAGTAAGAGAA	TTATGC 315
Query	301	AGTGCTG		GAGTGATAACACTGCTGCCAA	CTTACTTCTGACAACG	ATCGGA 360
Sbjct	316	Agtocto	CCATAACCA1	GAGTGATAACACTGCGGCCAA	CTTACTTCTGACAACG	ATCGGA 375
Query	361	GGACCGA	AGGAGCTAAC		GGATCATGTAACTCGC	CTTGAT 420
Sbjct	376	GGACCGA	AGGAGCTAAC	CGCTTTTTTGCACAACATGGG	GGATCATGTAACTCGC	CTTGAT 435
Query	421	CGTTGGG	AACCGGAGCT	GAATGAAGCCATACCAAACGA	CGAGCGTGACACCACG	ATGCCT 480
Sbjct	436	cattaga	AACCGGAGCT	GAATGAAGCCATACCAAACGA	CGAGCGTGACACCACG	ATGCCT 495
Query	481	GTAGCAA	TGGCAACAAC	GTT 500		
Sbjct	496	GTAGCAA	toocaacaac	GTT 515		

Figure 10: Basic local alignment of P. aeruginosa blaTEM gene of the isolate PA9 with high similarity NCBI-BLAST of P. aeruginosa strain F35 B-lactamase (blaTEM) gene, partial sequence (accession number: MG755406.1 in Gen Bank).

The phylogenetic tree was drawn to scale with branch lengths in the same units as the evolutionary distances used to infer the phylogenetic tree. The dataset was cleansed of positions with gaps or missing data (Complete deletion option). MEGA X 10.2.4 is used to perform phylogenetic analysis. Thirteen global taxa about *blactx-m* gene of *P. aeruginosa* were downloaded from NCBI and submitted with 3 local sequences to Mega X 0.0020

10.2.4 software to obtain Figure 11. Ten global taxa about *blashv* gene of *P. aeruginosa* were downloaded from NCBI and submitted with 3 local sequences to Mega X 10.2.4 software to obtain the Figure 12. Eleven global taxa about *blatem* gene of *P. aeruginosa* were downloaded from NCBI and submitted with 3 local sequences to Mega X 10.2.4 software to obtain Figure 13.

		(1) Pseudomonas aeruginosa No.1 (Local)
		(2) KY792758.1 Pseudomonas aeruginosa strain SKGH 46 United Arab Emirates isolation
		(3) KU139120.1 Pseudomonas aeruginosa strain Palg29 India isolation
		(4) KU139118.1 Pseudomonas aeruginosa strain PA137 India isolation
		(5) KU926353.1 Pseudomonas aeruginosa strain t9P1 Russia: Moscow isolation
	(20)	(6) MW757148.1 Pseudomonas aeruginosa strain PA-1 Iran isolation
(19) (18)		(7) CP069198.1 Pseudomonas aeruginosa strain 152962 France: Paris isolation
		(12) MF683053.1 Pseudomonas aeruginosa strain BSI16 Kenya: Nairobi isolation
		(13) MF683049.1 organism=Pseudomonas aeruginosa strain BSI14 Kenya: Nairobi isolation
		(14) KR824153.1 Pseudomonas aeruginosa strain JMNMN8 India isolation
		(15) Pseudomonas aeruginosa No.3 (Local)
		(16) Pseudomonas aeruginosa No.2 (Local)
	(8) KX787848.1 Pse	eudomonas aeruginosa strain PA-IQ9 Iraq isolation
	(11) KX787849.1 Ps	eudomonas aeruginosa strain PA-IQ16 country=Iraq
		(9) NG 056171.1 Pseudomonas aeruginosa strain PA4411 France isolation
0	ş	(17) (10) MF613979.1 Pseudomonas aeruginosa strain PA4411 France isolation

Figure 11: Phylogenic tree of blaCTX-M gene partial sequences of local and global sequences using neighbor joining bootstrap 1000 tree figure. Evolutionary relationships of 16 taxa. PA1 to PA3 represent the local isolates.

Figure 13: Phylogenic tree of blaTEM gene partial sequences of local and global sequences using neighbor joining bootstrap 1000 tree figure. Evolutionary relationships of 14 taxa.PA7 to PA9 represent local isolates.

MEGA features a number of useful tools for assembling sequence data sets from files or web-based repositories, as well as tools for visualizing the results in the form of interactive phylogenetic trees and evolutionary distance matrices [15]. The first stage in the analysis was to align all of the sequences form three genes in this study with other worldwide references using MEGA X 10.2.4 's (Clustal W) program step. This program was shown to have a high degree of similarity with all world sequences, including the sequences used in this study. These (Clustal W) results were significant since they were directly utilized in the phylogenetic tree design. The Neighbor-Joining (NJ) approach, which is a simplified version of the minimal evolution (ME) method, is used in this study to determine the close relationship between world and local sequences. Because it does not need the assumption of a constant rate of evolution, the NJ method yields an unrooted tree. An outgroup taxon is needed to find the root [10]. In blacTX-M gene phylogeny (Figure 1), it was submitted 16 sequences, 3 sequences belong to local sequences and 13 sequences belong to global sequences obtained by download from NCBI they submitted to a MEGA X 10.2.4 software program for obtaining phylogenic relationship among local and global sequences, after submitting these sequences to MEGA X 10.2.4 at the first time we found alignment by Clustal W, then use NJ method at bootstrap 1000, the local sequence of *P. aeruginosa* PA1 was near to the sequence KY792758.1 P. aeruginosa strain SKGH (UAE) and Indian isolates (KU130118.1 and KU130120.1), while the local sequence of *P. aeruginosa* PA2 and PA3 was closely related to the sequence KR824153 .1 (Indian isolates). All three local sequences are far away from Iraqi isolates (KX787848.1 and KX787849.1). In blashy gene phylogeny as shown in Figure 12, It was found that both local sequences P. aeruginosa PA5 and PA6 were closely related to the sequences of Egyptian isolates (MZ700496.1 and MZ700497.1). Also, the local sequences of *P. aeruginosa* PA4 were closely associated with the sequence KY640504.1 strain E14PAMO which is isolated in Egypt (Table 6). In the phylogeny of *blatem* gene (Figer13), the local sequences *P. aeruginosa* PA7 and PA9 were closely related to each other to form sister sequences, related to sequence MG755406.1 P. aeruginosa strain F35 which isolate in Iran. In contrast, the local sequences *P. aeruginosa* PA8 are near to the sequence AY559171.1 which is isolated in China. Thus, phylogenic relationship among local and world strains provide high information about origin and genetic evolution of local isolates.

4. Conclusion

This study demonstrated significant variation in the virulence factors of Pseudomonas aeruginosa across geographic regions, including Iraq, UAE, India, Egypt, and Iran. Most isolates exhibited biofilm-forming ability, contributing to their antibiotic resistance and persistence in infections. The sequencing of blaTEM, blaCTX-M, and blaSHV genes revealed diverse genetic profiles, highlighting the need for further studies to create a comprehensive genetic diversity map of P. aeruginosa. The findings stress the importance of regulating antibiotic use to prevent the spread of resistance. Region-specific strategies and improved infection control measures are essential to combat resistant strains and ensure public health safety.

Declaration of Competing Interests:

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Materials:

No Supplementary Materials.

Author Contributions:

H. F. Naji; methodology, writing—original draft preparation, M. A. Saleh ; writing—review and editing, H. F. Naji; paraphrasing. All authors have read and agreed to the published version of the manuscript. **Funding:**

This research received no external funding.

Institutional Review Board Statement:

The study was conducted in accordance with the protocol authorized by Department of Biology, College of Science, University of Babylon, Iraq.

Informed Consent Statement:

No Informed Consent Statement.

Data Availability Statement:

No Data Availability Statement.

Conflicts of Interest:

The authors declare no conflict of interest.

Acknowledgments:

The authors are grateful to the staff of the Department of Biology, College of Science, University of Babylon, Iraq.

Disclaimer/Journal's Note:

The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of JLSAR and/or the editor(s). JLSAR and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

5. References

- M. A. A. Mohammed Saleh and H. F. Naji, "Detection of blatem, blactx-m, and blashv genes in clinical isolates of multidrug-resistant pseudomonas aeruginosa," *Int J Health Sci (Qassim)*, 2022, doi: 10.53730/ijhs.v6ns7.12451.
- [2] F. Stapleton and N. Carnt, "Contact lens-related microbial keratitis: How have epidemiology and genetics helped us with pathogenesis and prophylaxis," in *Eye*, 2012. doi: 10.1038/eye.2011.288.
- [3] T. G. Thuo, C. Kiyuukia, J. Maina, T. Judah, S. Kiiru, and J. Kiiru, "Antimicrobial Resistance Profiles and Clonal Relatedness of <i>Pseudomonas aeruginosa</i> Strains Recovered

from Wounds Infections of Outpatient Population Presenting in a Rural Hospital in Kenya," *Adv Microbiol*, vol. 09, no. 02, 2019, doi: 10.4236/aim.2019.92009.

- [4] L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, "Bacterial biofilms: From the natural environment to infectious diseases," 2004. doi: 10.1038/nrmicro821.
- [5] T. K. W. Ling, J. Xiong, Y. Yu, C. C. Lee, H. Ye, and P. M. Hawkey, "Multicenter antimicrobial susceptibility survey of gram-negative bacteria isolated from patients with community-acquired infections in the People's Republic of China," *Antimicrob Agents Chemother*, vol. 50, no. 1, 2006, doi: 10.1128/AAC.50.1.374-378.2006.
- [6] M. Nasser, S. Gayen, and A. S. Kharat, "Prevalence of β-lactamase and antibiotic-resistant Pseudomonas aeruginosa in the Arab region," 2020. doi: 10.1016/j.jgar.2020.01.011.
- K. Tamura, J. Dudley, M. Nei, and S. Kumar, "MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0," *Mol Biol Evol*, vol. 24, no. 8, 2007, doi: 10.1093/molbev/msm092.
- [8] A. N. Suwaidan and H. F. Naji, "bla OXA genotyping of multidrug resistant Pseudomonas aeruginosa isolated from clinical specimens," *Eurasian J Biosci*, vol. 14, no. 2, 2020.
- [9] S. P. Lin, M. F. Liu, C. F. Lin, and Z. Y. Shi, "Phenotypic detection and polymerase chain reaction screening of extended-spectrum β-lactamases produced by Pseudomonas aeruginosa isolates," *Journal of Microbiology, Immunology and Infection*, vol. 45, no. 3, 2012, doi: 10.1016/j.jmii.2011.11.015.
- [10] N. Saitou and M. Nei, "The neighbor-joining method: a new method for reconstructing phylogenetic trees.," *Mol Biol Evol*, vol. 4, no. 4, 1987, doi: 10.1093/oxfordjournals.molbev.a040454.
- D. Penny, "Inferring Phylogenies.—Joseph Felsenstein. 2003. Sinauer Associates, Sunderland, Massachusetts.," Syst Biol, vol. 53, no. 4, 2004, doi: 10.1080/10635150490468530.
- [12] F. Odds, "Biochemical Tests for Identification of Medical Bacteria," J Clin Pathol, vol. 34, no. 5, 1981, doi: 10.1136/jcp.34.5.572-a.
- [13] T. S. Murray, M. Ledizet, and B. I. Kazmierczak, "Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates," *J Med Microbiol*, vol. 59, no. 5, 2010, doi: 10.1099/jmm.0.017715-0.
- [14] J. Fricks-Lima *et al.*, "Differences in biofilm formation and antimicrobial resistance of Pseudomonas aeruginosa isolated from airways of mechanically ventilated patients and cystic fibrosis patients," *Int J Antimicrob Agents*, vol. 37, no. 4, 2011, doi: 10.1016/j.ijantimicag.2010.12.017.
- [15] S. Kumar, M. Nei, J. Dudley, and K. Tamura, "MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences," *Brief Bioinform*, vol. 9, no. 4, 2008, doi: 10.1093/bib/bbn017.